
Вопрос задан 14.07.2019 в 15:05.
Предмет Геометрия.
Спрашивает Истомин Кирилл.
Площадь трапеции равна 54, диагонали 9 и 12 соответственно, верхнее основание 5. Найти нижнее
основание?

Ответы на вопрос

Отвечает Шкляева Алёна.
Площадь трапеции через диагонали и угол между ними
S = 1/2*d₁*d₂*sin(α)
54 = 1/2*9*12*sin(α)
sin(α) = 54/54 = 1
α = 90°
Диагонали перпендикулярны, и это упрощает дело.
5² = x²+y²
a² = (9-x)²+(12-y)²
Треугольники между диагоналями и верхним и нижним основаниями подобны с коэффициентом подобия k
k = (9-x)/x
k = (12-y)/y
k = a/5
-------
(9-x)/x = (12-y)/y
9/x - 1 = 12/y - 1
3y = 4x
y = 4/3x
5² = x²+y² = x²+(4/3x)² = (9+16)/9*x²
25 = 25/9*x²
9 = x²
x = 3
y = 4/3x = 4/3*3 = 4
a² = (9-x)²+(12-y)² = (9-3)²+(12-4)² = 6²+8² = 100
a = √100 = 10
S = 1/2*d₁*d₂*sin(α)
54 = 1/2*9*12*sin(α)
sin(α) = 54/54 = 1
α = 90°
Диагонали перпендикулярны, и это упрощает дело.
5² = x²+y²
a² = (9-x)²+(12-y)²
Треугольники между диагоналями и верхним и нижним основаниями подобны с коэффициентом подобия k
k = (9-x)/x
k = (12-y)/y
k = a/5
-------
(9-x)/x = (12-y)/y
9/x - 1 = 12/y - 1
3y = 4x
y = 4/3x
5² = x²+y² = x²+(4/3x)² = (9+16)/9*x²
25 = 25/9*x²
9 = x²
x = 3
y = 4/3x = 4/3*3 = 4
a² = (9-x)²+(12-y)² = (9-3)²+(12-4)² = 6²+8² = 100
a = √100 = 10


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili