
Вопрос задан 13.07.2019 в 18:07.
Предмет Геометрия.
Спрашивает Шматков Данил.
Найдите радиус сектора, если площадь соответствующего сегмента равна 3п-9


Ответы на вопрос

Отвечает Майер Светлана.
Условие задачи неполное, так как с данной фиксированной площадью имеется бесконечно много сегментов, и радиусы соответствующих секторов будут все разными.
Поэтому задача может быть решена только в общем виде.
Площадь сектора:
Sсект = πR²α / 360°
Если угол задан в радианах, то
Sсект = πR²α / (2π) = 1/2 · R²α
Площадь треугольника АВС:
Sabc = 1/2 · R²·sinα
Площадь сегмента:
Sсегм = Sсект - SΔabc = 1/2 · R²α - 1/2 · R²·sinα = 1/2 · R²(α - sinα)
По условию, площадь сегмента равна 3π - 9:
1/2 · R²(α - sinα) = 3π - 9
R² = (6π - 18) / (α - sinα)
R = √( (6π - 18) / (α - sinα) )
По этой формуле можно вычислить радиус, если известен угол сектора.
Например:
α = π/6

Поэтому задача может быть решена только в общем виде.
Площадь сектора:
Sсект = πR²α / 360°
Если угол задан в радианах, то
Sсект = πR²α / (2π) = 1/2 · R²α
Площадь треугольника АВС:
Sabc = 1/2 · R²·sinα
Площадь сегмента:
Sсегм = Sсект - SΔabc = 1/2 · R²α - 1/2 · R²·sinα = 1/2 · R²(α - sinα)
По условию, площадь сегмента равна 3π - 9:
1/2 · R²(α - sinα) = 3π - 9
R² = (6π - 18) / (α - sinα)
R = √( (6π - 18) / (α - sinα) )
По этой формуле можно вычислить радиус, если известен угол сектора.
Например:
α = π/6


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili