
Одна из сторон параллелограмма в 4 раза больше другой. Найдите площадь параллелограмма, если его
периметр равен 20√2, а острый угол 45 °

Ответы на вопрос

Обозначим за х меньшую сторону параллелограмма. Тогда его большая сторона равна 4х.
Периметр равен сумме всех сторон, значит:
х + 4х + х + 4х = 20√2
10х = 20√2
х=2√2
Большая сторона в 4 раза больше, значит она равна 4х2√2 = 8√2
Площадь параллелограмма равна произведению его основания на высоту:
S = 8√2 x h, где h - высота.
Построим высоту. Мы получаем прямоугольный треугольник, у которого известен по условию один из углов - это 45°.
Известно, что синус угла прямоугольного треугольника равен отношению его противолежащего катета к гипотенузе. Противолежащий катет в данном случае - это наша высота h, которую мы не знаем. Гипотенуза треугольника - это меньшая сторона параллелограмма, т.е. 2√2. Синус угла 45° равен √2 / 2.
sin 45 = h / 2√2. Отсюда находим h:
h = sin 45 x 2√2 = √2/2 x 2√2 = √2 x √2 = 2
Находим площадь параллелограмма:
S = h x 8√2 = 2 x 8√2 = 16√2


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili