Вопрос задан 26.05.2018 в 13:41. Предмет Геометрия. Спрашивает Ибрагимов Башир.

В прямоугольном треугольнике ABC гипотенуза AB равна 18 см, а катет BC — 9 см. Найдите угол между

высотой CH и биссектрисой CP, если известно, что точка P лежит между точками A и H.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чепеницкая Ольга.

Катет ВС = 9см равен половине гипотенузы АВ = 18см, поэтому угол А = 30°, а угол В = 90° - 30° = 60°.
ΔСВН - прямоугольный с углом В = 60°. В этом треугольнике угол СНВ = 90°, следовательно угол ВСН = 30°.
Биссектриса СР делит  прямой угол С пополам, поэтому ВСР = 45°.
Искомый угол между биссектрисой и высотой ∠НСР = ∠ВСР - ∠ВСН =45° - 30° = 15°
Ответ: 15°

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос