Вопрос задан 26.05.2018 в 07:17. Предмет Геометрия. Спрашивает Катаева Полина.

если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и ко второй

прямой (нужно доказать)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Целищев Мирон.

по определению: две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.значит параллельные прямые лежат в одной плоскости.по лемме о перпендикулярности прямых:если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.по определению :прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. А раз две параллельные прямые принадлежат плоскости, а третья перпендикулярна одной из них, то она перпендикулярна и другой

0 0
Отвечает Косова Виктория.

Допустим первая параллельная прямая А,а вторая В, прямая перпендикулярная прямой А будет С.

           Рассмотрим прямые А||В и С-секущая:

                  Т.к. С перпендикулярна А то по свойству, что соответственные углы равны получаем, что С перпендикулярна В.

           Доказано.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос