
Вопрос задан 25.05.2018 в 14:20.
Предмет Геометрия.
Спрашивает Куриганов Александр.
Площадь основания правильной четырехугольной пирамиды 36 см, а площадь её полной поверхности 96 см.
Найдите высоту пирамиды.

Ответы на вопрос

Отвечает Ломага Андрій.
• ABCD – это основание четырехугольника;
• M – вершина;
• MО – высота пирамиды (где О –
это точка пересечения диагоналей);
• МN – высота боковой грани.
Sосн = а² = 36 (где а – это сторона основания)
а = √36 = 6 (см)
Sполн = Sосн + Sбок = 96 (см)
Sбок = Sпол + Sосн
Sбок = 96 - 36=60 (см²)
Sбок = 1 : 2 * Р * L (где Р – это периметр основания, а L – высота боковой грани)
Росн = 4 * 6 = 24
S = 1: 2* 24 * L = 60
12 * L = 60
L= 60 : 12
L = 5
Используя прямоугольный треугольник МОN (где угол О = 90°) по теореме Пифагора найдём, что:
КО = Н
ОМ = 1 :2
а = 3 (см)
КМ = L = 5
КО² = КМ² - ОМ²
КО² = 5² - 3² = 25 - 9 = 16
КО = √16 = 4
Н = 4 (см)
Ответ: 4 см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili