
Вопрос задан 30.06.2019 в 12:41.
Предмет Геометрия.
Спрашивает Хамутовская Кристина.
Даны прямая a и точка M,не лежащая на ней.Постройте прямую,проходящую через точку M и
перпендикулярную к прямой a. Решение: Построим окружность с центром в данной точке M, пересекающую данную прямую a в двух точках, которые обозначим буквами A и B.Затем построим две окружности с центрами A и B,проходящие через точку M.Эти окружности пересекаются в точке M и ещё в одной точке,которую обозначим буквой N.Проведём прямую MN и докажем,что эта прямая-искомая, то есть она перпендикулярна к прямой a. В самом деле,треугольники AMN и BMN равны по трём сторонам,поэтому ∠1=∠ 2.Отсюда следует,что отрезок MC (C-точка пересечения прямых a и MN)является биссектрисой равнобедренного треугольника AMB, а значит, и высотой. Таким образом, MN ⊥AB,то есть MN⊥a. Помогите пожалуйста!!!!Срочно надо!!Надо кратко написать с:

Ответы на вопрос

Отвечает Романюк Віка.
Построение:
1. окр1 (М; r)
2. окр2 П а = M,N (П-пересекает значок "подкова")
3. окр3(А;АВ)
4. окр4 (В; АВ)
5. окр 3 П окр 4 = М; К
6. МК - искомая
Доказательство:
1) тр АМN= тр ВМN (по трем сторонам), ⇒ уг 1 = уг 2 ⇒MN - биссектриса угла р/б тр АМВ, ⇒ MN - высота ( по свойству р/б тр) ⇒MN _|_ AB⇒MN_|_a
1. окр1 (М; r)
2. окр2 П а = M,N (П-пересекает значок "подкова")
3. окр3(А;АВ)
4. окр4 (В; АВ)
5. окр 3 П окр 4 = М; К
6. МК - искомая
Доказательство:
1) тр АМN= тр ВМN (по трем сторонам), ⇒ уг 1 = уг 2 ⇒MN - биссектриса угла р/б тр АМВ, ⇒ MN - высота ( по свойству р/б тр) ⇒MN _|_ AB⇒MN_|_a


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili