Вопрос задан 28.06.2019 в 11:11. Предмет Геометрия. Спрашивает Ясинський Ілля.

З точки, яка не належить площині, проведено до неї дві похилі, довжини проекцій яких дорівнюють 12

см і 16 см, а сума довжин похилих — 56 см. Знайдіть довжини похилих.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Антонова Женя.
Рисунок до задачі див. у прикріпленому файлі.

Нехай MO - перпендикуляр до площини α, MK, MN - похилі, а NO, OK - проекції цих похилих на площину.

ΔMOK і ΔMON - прямокутні.
MO - спільний перпендикуляр, спільний катет у цих двох трикутниках. Виразимо за теоремою Піфагора його з кожного трикутника та прирівняємо.

NO=16;OK=12; \\ MN=x;MK=56-x; \\ MO^2=MN^2-NO^2=x^2-16^2 \\ MO^2=MK^2-OK^2=(56-x)^2-12^2 \\ x^2-16^2=(56-x)^2-12^2 \\  x^{2} -256=3136-112x+ x^{2} -144 \\ 112x=3136-144+256 \\ 112x=3248 \\ x=29-NM \\ MK=56-29=27
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос