Вопрос задан 26.06.2019 в 09:53. Предмет Геометрия. Спрашивает Филипова Камилла.

Периметры подобных треугольников относятся как 3:4, а сумма их средних по величине сторон равен

112см. найдите стороны обоих треугольников если стороны одного из них относятся как 4:8:7.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мишинева Виталия.
Т.к. периметры подобных треугольников относятся как длины соответствующих сторон, то, например, для указанных в задаче средних по величине сторон справедливо такое же отношение как и для периметров треугольников, т.е. 3:4.
Пусть а,b,c и А, В, С - соответствующие стороны подобных треугольников. Из сказанного выше следует, что b:B=3:4. Отсюда b= \frac{3}{4} B
По условию b+B=112. Решим уравнение:
B+ \frac{3}{4} B=112 \\\frac{7}{4} B=112 \\ B= \frac{112*4}{7} =64\ =\ \textgreater \ b=\frac{3}{4} *64=48
Пусть для одно из треугольников a:b:c=4:8:7. Тогда на длину 48 приходится 8 равных частей (всего частей 4+8+7=19). Одна часть равна 48:8=6. Отсюда а=4*6=24 и с=7*6=42.
Стороны одно из треугольников найдены и равны 24; 48 и 42.
Стороны второго треугольника больше в  \frac{4}{3} раза соответствующих сторон первого треугольника. Найдем их.
B=64;\ A= \frac{4}{3} a=\frac{4}{3} *24=32;\ C=\frac{4}{3} c=\frac{4}{3} *42=56
Стороны другого треугольника тоже найдены и равны 32; 64 и 56.
Ответ: 24; 48; 42 и 32; 64; 56.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос