
Вопрос задан 25.06.2019 в 13:43.
Предмет Геометрия.
Спрашивает Цыпылова Цырена.
Пожалуйта помогите решить!Круг, центр которого принадлежит стороне AВ треугольника ABC , проходит
через точку В , прикасается к стороне АС в точке С и пересекает сторону АВ в точке D. Найти углы треугольника АВС, если AD:DB=1:2.

Ответы на вопрос

Отвечает Аямангали Аян.
Решение в приложенном рисунке.



Отвечает Быков Виктор.
Чертеж во вложении.
Т.к. АД:ДВ=1:2, и ДВ-диаметр, то АД=ДО=ОВ=ОС.
∆ АОС - прямоугольный, гипотенуза АО в 2 раза больше катета ОС, значит, в нем ∠А=30°, и ∠АОС=60°.
∆ ВОС - равнобедренный, значит, в нем ∠В=∠ВСО=60°/2=30°.
Теперь ∠ВСА=90°+30°=120°.
Итак в ∆ АВС ∠А=30°, ∠В=30°, ∠С=120°.
Т.к. АД:ДВ=1:2, и ДВ-диаметр, то АД=ДО=ОВ=ОС.
∆ АОС - прямоугольный, гипотенуза АО в 2 раза больше катета ОС, значит, в нем ∠А=30°, и ∠АОС=60°.
∆ ВОС - равнобедренный, значит, в нем ∠В=∠ВСО=60°/2=30°.
Теперь ∠ВСА=90°+30°=120°.
Итак в ∆ АВС ∠А=30°, ∠В=30°, ∠С=120°.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili