Вопрос задан 22.05.2018 в 21:10. Предмет Геометрия. Спрашивает Чупрова Влада.

Диагонали равнобедренной трапеции точкой пересечения делятся на отношение 2:5 Вычислите периметр

трапеции,меньшее основание которой равно высоте и равно 8 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Джахангиров Фарид.

Пусть ABCD - равнобедренная трапеция с диагоналями BD и AC. Точка E - точка пересечения диагоналей. Треугольники EBC и AED подобны. Тогда 
BE/ED = BC/AD. Следовательно, AD = BC*ED/BE. Отношение ED/BE по условию равно 5/2. Тогда AD = 8*5/2 = 20. 
Для нахождения боковых сторон трапеции опустим высоту из вершины B: BH.
В треугольнике ABH катет AH равен (AD-BC)/2 = 6. Определим длину боковой стороны по теореме Пифагора: 
AB^2 = BH^2 + AH^2
AB= \sqrt{6 ^{2} +8^2}=10
Тогда периметр ABCD = 8+12+10*2 = 40.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос