
Вопрос задан 22.05.2018 в 21:10.
Предмет Геометрия.
Спрашивает Чупрова Влада.
Диагонали равнобедренной трапеции точкой пересечения делятся на отношение 2:5 Вычислите периметр
трапеции,меньшее основание которой равно высоте и равно 8 см

Ответы на вопрос

Отвечает Джахангиров Фарид.
Пусть ABCD - равнобедренная трапеция с диагоналями BD и AC. Точка E - точка пересечения диагоналей. Треугольники EBC и AED подобны. Тогда
BE/ED = BC/AD. Следовательно, AD = BC*ED/BE. Отношение ED/BE по условию равно 5/2. Тогда AD = 8*5/2 = 20.
Для нахождения боковых сторон трапеции опустим высоту из вершины B: BH.
В треугольнике ABH катет AH равен (AD-BC)/2 = 6. Определим длину боковой стороны по теореме Пифагора:
AB^2 = BH^2 + AH^2
Тогда периметр ABCD = 8+12+10*2 = 40.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili