Вопрос задан 07.06.2019 в 06:10. Предмет Геометрия. Спрашивает Ахмедалим Сабина.

Дано: треугольник ABC - р/б , АС- основание, М лежит на АВ ,К лежит на ВС, Р лежит на АС, угол АМР

= углу РКС, АМ = КС доказать а) МР=РК б) МК перпендикулярно ВР
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Потеряева Маргарита.
А)Доказательство:
Рассмотрим треугольники AMP и CKP.По условию задачи угол AMP равен углу PKC;сторона AM равна стороне KC,а углы MAP и KCP равны как углы равнобедренного треугольника,лежащие при основании.Поэтому треугольники AMP и CKP равны по второму признаку равенства треугольников.В равных треугольниках против равных углов лежат равные стороны,поэтому стороны MP и KP этих треугольников равны,что и требовалось доказать.
б)Так как AM=KC по условию,то прямая MK параллельна прямой AC.Так как треугольники AMP и CKP равны,то BP является медианой треугольника ABC.Медиана равнобедренного треугольника является также его биссектрисой и высотой. BP перпендикулярна к прямой AC ,а т.к. прямая AC параллельна прямой MK ,то высота BP перпендикулярна к прямой MK,что и требовалось доказать.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос