Вопрос задан 02.06.2019 в 03:53. Предмет Геометрия. Спрашивает Чикачёв Александр.

Около остроугольного АВС описана окружность. Точка О пересечения серединный перпендикуляров удалена

от прямой АВ на 6 см. Найдите угол ОВА и радиус окружности, если угол АОС=90, угол ОВС=15
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Солдатова Александра.
Центральный угол АОС опирается на дугу АС, значит градусная мера дуги АС равна 90°. Треугольник ВОС - равнобедренный, т.к. ОВ=ОС=r. Значит, углы при его основании ВС равны между собой:
<OBC=<OCB=15°
Зная сумму углов треугольника, находим угол ВОС:
<BOC=180-<OBC-<OCB=180-15*2=150°
Угол ВОС - центральный и опирается на дугу ВС, значит ВС=150°
Дуга АВ равна 360 - АС - ВС = 360-90-150=120°
Центральный угол АОВ опирается на дугу АВ, значит
<AOB=120°
Треугольник АОВ - равнобедренный, т.к. ОА=ОВ=r. Значит, углы при его основании АВ равны между собой:
<OBA=<OAB=(180-<AOB):2=(180-120):2=30°
Рассмотрим прямоугольный треугольник ОНВ. Катет ОН, лежащий против угла в 30°, равен половине гипотенузы ОВ. Значит
ОВ=2*ОН=2*6=12 см
r=OB=12 см
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос