
Вопрос задан 27.05.2019 в 02:47.
Предмет Геометрия.
Спрашивает Анисимова Катерина.
Окружность, вписанная в равнобокую трапецию, делит точки касания боковую сторону на отрезки, длина
большого из которых равна 8 см. Найдите меньшее основание трапеции, если её периметр равен 60 см.

Ответы на вопрос

Отвечает Кириленко Леха.
Трапеция АВСД, АВ=СД. уголА=уголД, уголВ=уголС, точка касания М на АВ, точка К на ВС, точка Р на СД, точка Т на АД, ДР=8, ДТ=ДР=8 как касательные проведенные из одной точки, АТ=АМ=8 как касательные проведенные из одной точки и потому что уголА=уголД, МВ=ВК=х как касательные проведенные из одной точки, СК=СР=х как касательные проведенные из одной точки (уголВ=уголС), периметр=8+8+8+8+х+х+х+х, 60=32+4х, х=7, ВС=7+7=14, АВ=8+7=15=СД, АД=8+8=16


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili