
Вопрос задан 23.05.2019 в 21:23.
Предмет Геометрия.
Спрашивает Дрёмин Даня.
АВ и АС касательные к окружности с центром О.ВО=6см, АО=12 см. Найдите угол между касательными.


Ответы на вопрос

Отвечает Кот Саша.
Рисунок прикреплю позже
Треугольник ОВА прямоугольный с прямым углом В( так как радиус перпендикулярен касатеотной в, проведённый в точку касания)
в этом треугольнике ОВ=6см ОА=12 см( по условию) ОА также и гипотенуза. Катет который равен половине гипотенузы лежит напротив угла в 30 градусов, т.е ВО =1/2Ао следовательно противолежащий катету ВО угол ВАО равен 30 градусов. Так как треугольники ОВА и ОСА равны по ттретьему признаку(ОВ=ОС, ОА общая, АВ=АС по свойству касательных) то углы ВАО и САО также равны. Поэтому искомый угол равен 60 градусов
Ответ 60


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili