Вопрос задан 23.05.2019 в 21:23. Предмет Геометрия. Спрашивает Дрёмин Даня.

АВ и АС касательные к окружности с центром О.ВО=6см, АО=12 см. Найдите угол между касательными.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кот Саша.

Рисунок прикреплю позже

Треугольник ОВА прямоугольный с прямым углом В( так как радиус перпендикулярен касатеотной в, проведённый в точку касания)

 в этом треугольнике ОВ=6см ОА=12 см( по условию) ОА также и гипотенуза. Катет который равен половине гипотенузы лежит напротив угла в 30 градусов, т.е ВО =1/2Ао следовательно противолежащий катету ВО угол ВАО равен 30 градусов. Так как треугольники ОВА и ОСА равны по ттретьему признаку(ОВ=ОС, ОА общая, АВ=АС по свойству касательных) то углы ВАО и САО также равны. Поэтому искомый угол равен 60 градусов

 Ответ 60

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос