
Вопрос задан 22.05.2019 в 09:22.
Предмет Геометрия.
Спрашивает Чернова Александра.
В треугольнике АВС отмечены середины М и N сторон ВС и АС соответственно. Площадь треугольника CNM
= 67. Найдите площадь четырехугольникa ABMN.

Ответы на вопрос

Отвечает Hugrov Alex.
67*2=134
134*1,5=201
Пояснение
Проведем высоту из вершины С.
SCNM=1/2*CE*NM=67 (по условию).
CE*NM=134
Рассмотрим труеугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE - средняя линия для треугольника ACD, значит CE=ED.
ABMN - трапеция, тогда
SABMN=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем:
SABMN=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*134=201
Ответ: SABMN=201
134*1,5=201
Пояснение
Проведем высоту из вершины С.
SCNM=1/2*CE*NM=67 (по условию).
CE*NM=134
Рассмотрим труеугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE - средняя линия для треугольника ACD, значит CE=ED.
ABMN - трапеция, тогда
SABMN=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем:
SABMN=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*134=201
Ответ: SABMN=201


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili