
Касательные в точках A и B к окружности с центром O пересекаются под углом 85°.
Найдите угол ABO. Ответ дайте в градусах.

Ответы на вопрос

Соединим центр окружности O с точкой пересечения касательных. Пусть H точка пересечения касательных. Рассмотрим треугольник AOH : 1) В нём ∠ OAH = 90° так как радиус OA проведён в точку касания A касательной AH, и треугольник AOH - прямоугольный.
2) Так как касательные проведены из одной точки, то отрезок, соединяющий центр окружности и точку пересечения касательных ( в нашем случае этот отрезок OH) является биссектрисой угла AHB . Поэтому ∠AHO = ∠AHB / 2 = 85° / 2 = 42.5°.
3) Сумма двух острых углов в прямоугольном треугольнике равна 90°. То есть ∠AOH + ∠AHO = 90°. ∠AOH = 90° - ∠AHO = 90° - 42.5° = 47.5°
Треугольники AOH и BOH равны ( OH общая сторона. ∠AHB = ∠OHB . AH = BH - как отрезки касательных проведённых из одной точки)
Поэтому ∠AOH = ∠BOH = 47.5°
Тогда ∠ AOB = ∠AOH + ∠BOH = 95°
Треугольник AOB равнобедренный так как OA = OB - как радиусы.Поэтому ∠ ABO = ∠ OAB = (180° - ∠ AOB) / 2.
∠ ABO = (180° - 95°) / 2 = 85° / 2 = 42.5°
Ответ:∠ ABO = 42.5°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili