
Докажите что ab=oc если медианы AA1 и BB1 треугольника ABC пересекаются в точке O под прямым углом


Ответы на вопрос




Proof that AB = OC if the medians AA1 and BB1 of triangle ABC intersect at point O at a right angle
To prove that AB = OC, we need to show that the length of segment AB is equal to the length of segment OC.
Let's start by considering the medians of triangle ABC. The medians are the line segments that connect each vertex of the triangle to the midpoint of the opposite side. In this case, we have medians AA1 and BB1.
According to the given information, the medians AA1 and BB1 intersect at point O at a right angle. This means that angle AOB is a right angle.
Now, let's consider the properties of medians in a triangle. One important property is that the medians divide each other in a 2:1 ratio. This means that the length of segment AO is twice the length of segment OA1, and the length of segment BO is twice the length of segment OB1.
Using this property, we can express the lengths of segments AO and BO in terms of the lengths of segments OA1 and OB1:
- AO = 2 * OA1 - BO = 2 * OB1
Since segment OA1 is equal to segment OB1 (both are medians), we can rewrite the above equations as:
- AO = 2 * OB1 - BO = 2 * OA1
Now, let's consider the lengths of segments AB and OC. According to the given information, we want to prove that AB = OC.
Using the triangle inequality, we can write:
- AB < AO + OB - OC < OA + AC
Since AO = 2 * OB1 and OA = 2 * OA1, we can substitute these values into the above inequalities:
- AB < 2 * OB1 + 2 * OA1 - OC < 2 * OA1 + AC
Now, let's consider the properties of medians again. Another important property is that the medians divide the triangle into six smaller triangles of equal area. This means that the area of triangle AOB is equal to the area of triangle AOC.
Since the area of a triangle is given by the formula (1/2) * base * height, we can write:
- (1/2) * AB * OB1 = (1/2) * AC * OA1
Canceling out the common factors, we get:
- AB * OB1 = AC * OA1
Now, let's substitute the values of AO and BO from earlier:
- AB * (1/2) * AO = AC * (1/2) * BO
Simplifying further:
- AB * AO = AC * BO
Since AO = 2 * OB1 and BO = 2 * OA1, we can substitute these values into the above equation:
- AB * 2 * OB1 = AC * 2 * OA1
Canceling out the common factors, we get:
- AB * OB1 = AC * OA1
Comparing this equation with the equation we derived earlier, we can see that they are the same:
- AB * OB1 = AC * OA1 = AB * OA1
This means that AB = OA1.
Now, let's consider the lengths of segments AB and OC again:
- AB < 2 * OB1 + 2 * OA1 - OC < 2 * OA1 + AC
Since AB = OA1, we can substitute this value into the above inequalities:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * OA1 - OC < 2 * OA1 + AC
But we know that AB = OA1, so we can rewrite the inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
But we know that AB = OA1, so we can rewrite the inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Since AB = OA1, we can rewrite the above inequalities as:
- AB < 2 * OB1 + 2 * AB - OC < 2 * AB + AC
Simplifying further:
- AB < 2


Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili