Вопрос задан 09.05.2019 в 23:59. Предмет Геометрия. Спрашивает Лебрет Валерия.

В треугольнике ABC угол A=40°, угол B=20°, AB-BC = 4. Найти длину биссектрисы угла C

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Салимов Илья.
Отложим на стороне AB отрезок BD, равный BC. Тогда треугольник BCD – равнобедренный с углом при вершине 20°, поэтому углы при основании равны 80° (см. рис.). Пусть CE – биссектриса угла C. Тогда  ∠BCE = 60°,  поэтому  ∠AEC = 20° + 60° = 80°.  Таким образом, в треугольнике DEC равны два угла, поэтому он равнобедренный. Угол при его вершине C равен 20°, поэтому  ∠ACD = 40°.  Значит, треугольник ACD также равнобедренный, следовательно, 
CE = CD = AD = AB – BC = 4.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи воспользуемся теоремой синусов.

Согласно теореме синусов, отношение длины стороны треугольника к синусу противолежащего ей угла постоянно для всех сторон

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос