
Вопрос задан 14.05.2018 в 11:43.
Предмет Геометрия.
Спрашивает Коваленко Никита.
В прямоугольном треугольнике ABC длина катета AB равна 6, а длина катета BC равна 8. Точка D делит
гипотенузу AC пополам. Найти расстояние между центрами окружностей, вписанных в треугольник ABD и в треугольник BCD.

Ответы на вопрос

Отвечает Ворфоломеева Виктория.
Треугольник АВС, уголВ=90, ВС=8, АВ=6, Ас=корень(ВС в квадрате+АВ в квадрате)=корень(64+36)=10, АД=СД=1/2АС=10/2=5, ВД-медиана в прямоугольном треугольнике проведенная к гипотенузе=1/2гипотенузы=10/2=5,
треугольникАДВ. полупериметр(р)=(АД+ВД+АВ)/2=(5+5+6)/2=8, площадьАДВ=корень(р*(р-АД)*(р-ВД)*(р-АВ))=корень(8*3*3*2)=12, радиус вписанной окружности=площадь/полупериметр=12/8=3/2
треугольник СВД, полупериметр=(5+5+8)/2=9, площадьСВД=корень(9*4*4*1)=12
радиус вписанной=12/9=4/3
расстояние=радиус1+радиус2=3/2+4/3=17/6=2 и 5/6


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili