
Вопрос задан 04.05.2019 в 22:52.
Предмет Геометрия.
Спрашивает Карапетян Нарек.
Периметр равностороннего треугольника равен 12 корней из 3 см. Найдите радиус окружности, вписанной
в треугольник. Помогите решить пожалуйста через тангенс

Ответы на вопрос

Отвечает Юсупов Артур.
Значит, сторона равностороннего треугольника равна 12√3:3=4√3.
Тогда площадь треугольника равна S=1/2*a²*sin60°= 1/2*(4√3)²*√3/2=12√3
r=2S/P=2*12√3/12√3=2( см).Это классическое решение, тангенс привязать непросто.
С тангенсом попробуем решить задачу так.
Поскольку треугольник равносторонний, всего его углы равны 60°.
Центр вписанной окружности - точка пересечения биссектрис.В равностороннем треугольнике биссектрисы являются одновременно высотами и медианами, поэтому центр окружности - точка пересечения медиан.
Радиус вписанной окружности равен 1/3 медианы.
Найдем медиану. Она равна 2√3*tg 60°=2√3*√3=6 (из треугольника, у которого катеты - медиана и половина стороны, на которую она опущена).
Тогда радиус вписанной окружности равен 6:3=2 (см).
Тогда площадь треугольника равна S=1/2*a²*sin60°= 1/2*(4√3)²*√3/2=12√3
r=2S/P=2*12√3/12√3=2( см).Это классическое решение, тангенс привязать непросто.
С тангенсом попробуем решить задачу так.
Поскольку треугольник равносторонний, всего его углы равны 60°.
Центр вписанной окружности - точка пересечения биссектрис.В равностороннем треугольнике биссектрисы являются одновременно высотами и медианами, поэтому центр окружности - точка пересечения медиан.
Радиус вписанной окружности равен 1/3 медианы.
Найдем медиану. Она равна 2√3*tg 60°=2√3*√3=6 (из треугольника, у которого катеты - медиана и половина стороны, на которую она опущена).
Тогда радиус вписанной окружности равен 6:3=2 (см).



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения радиуса окружности, вписанной в равносторонний треугольник, можно воспользоваться формулой:
r = P / (3 * sqrt(3))
где r - радиус окружности, P - периметр треугольника.
В данном случае периметр равностороннего треугольника равен 12 корня из 3 см. Подставим это значение в формулу:
r = 12 * sqrt(3) / (3 * sqrt(3)) = 4 см.
Таким образом, радиус окружности, вписанной в треугольник, равен 4 см.


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili