
центр окружности описанной около трапеции лежит на ее большем основании. боковая сторона трапеции
равна 15 радиус окружности 12.5. найдите площадь трапеции.

Ответы на вопрос

Дана трапеция АВСD, вокруг которой описана окружность.
Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180° (π радиан).
Из этого следует, что трапеция равнобедренная.
АВ=СD=15 см
Площадь трапеции равна произведению ее высоты на полусумму оснований.
Известно только одно основание - оно равно диаметру окружности
АD=2 r=25 cм
Так как центр описанной окружности лежит на большем основании трапеции,
диаметр окружности, ее боковая сторона и диагональ образуют прямоугольный треугольник с гипотенузой, равной диаметру.
Высоту трапеции h = ВD найдем по формуле высоты прямоугольного треугольника, проведенного из прямого угла к гипотенузе:
h = 2s/a , где а - гипотенуза.
Площадь треугольника пока не известна.
Для ее нахождения нужно найти длину второго катета -диагонали трапеции ВD.
ВD=√(АD²-АВ²)=√(25²-15²)=√400=20 см
2s ABD=АВ·ВD=15·20=300 cм²
h =300:25= 12 см
Отрезок от А до основания Н высоты ВН трапеции равен в равнобедренной трапецииполуразности оснований.
АН найдем из прямоугольного треугольника АВН по теореме Пифагора.
Полуразность оснований 9 см
Разностьоснований 18 см
Меньшее основание
ВС= 25 -18=7 см
S трапеции = 12·(25+7):2 =192 см²



Finding the Area of the Trapezoid
To find the area of the trapezoid, we can use the formula:
Area = (1/2) * (sum of parallel sides) * (height)
First, let's find the height of the trapezoid.
Finding the Height of the Trapezoid
The center of the circle circumscribed around the trapezoid lies on its larger base. Given that the radius of the circle is 12.5, we can use this information to find the height of the trapezoid.
The height of the trapezoid is equal to the radius of the circle, which is 12.5.
Calculating the Area
Now that we have the height, we can calculate the area of the trapezoid using the formula mentioned earlier.
Area = (1/2) * (sum of parallel sides) * (height)
The sum of the parallel sides of the trapezoid is 15.
Area = (1/2) * 15 * 12.5
Area = 93.75 square units
So, the area of the trapezoid is 93.75 square units.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili