Вопрос задан 13.07.2019 в 05:27. Предмет Геометрия. Спрашивает Гончар Соня.

Высота проведенная из вершины прямого угла прямоугольного треугольника равна 6 см,и делит

гипотенузу на отрезки один из которых больше другого на 5. см.Найти все стороны.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шевцова Кира.
Высота, опущенная на гипотенузу прямоугольного треугольника, равна среднему геометрическому отрезков, на которые она делит гипотенузу. Пусть в прямоугольном треугольнике ABC с гипотенузой C проведена высота CH, при этом AH=x, BH=x+5 (по условию, один из этих отрезков больше другого на 5 см). Тогда CH²=AH*BH, 6²=x(x+5), x²+5x=36, x²+5x-36=0. Решим это квадратное уравнение: D=25+36*4=169=13², x₁=(-5+13)/2=4, x₂=(-5-13)/2=-9, x₂ - посторонний корень, так как длина отрезка - положительное число. Тогда AH=4, BH=9, AB=13. Рассмотрим прямоугольный треугольник ACH, в нём катеты AH и CH равны 4 и 6, тогда гипотенуза AC по теореме Пифагора равна √4²+6²=√52. Аналогично, рассмотрим прямоугольный треугольник BCH, в котором катеты CH и BH равны 6 и 9, тогда гипотенуза BC по теореме Пифагора равна √6²+9²=√117. 

Таким образом, стороны треугольника равны √52, √117, 13.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос