
Вопрос задан 02.05.2019 в 20:12.
Предмет Геометрия.
Спрашивает Уфимцева Аня.
Составить уравнение трех сторон квадрата, если известно, что четвертой стороной является отрезок
прямой 4x+3y-12=0, концы которого лежат на осях координат.

Ответы на вопрос

Отвечает Алиев Марсель.
1) Найдем точки пересечения прямой 4х+3у-12=0 с координатными осями
х=0 тогда у= 4 А(0; 4)
у=0 тогда х=3 В(3;0)
2) Прямые перпендикулярные данной имеют вид 3х-4у+с=0
нормальные векторы взаимно перпендикулярных прямых ортогональны
нормальный вектор данной прямой (4;3)
нормальный вектор ортогональных прямых (3;-4)
Скалярное произведение в самом деле даст 0
4·3+3·(-4)=0
Чтобы найти с подставим координаты точек
А(0;4)
3·0-4·4+с=0 ⇒ с =16
3х-4у+16=0 уравнение прямой, перпендикулярной прямой 4х+3у-12=0 и проходящей через точку А
В(3;0)
3·3-4·0+с=0 ⇒ с = -9
3х-4у-9=0 уравнение прямой, перпендикулярной прямой 4х+3у-12=0 и проходящей через точку В
Сторона квадрата АВ=5 ( египетский треугольник)
Отложим на прямой 3х-4у-9=0 отрезок BD=5
Получим точку D
Координаты этой точки удобнее всего считать по клеточкам
D(7;3)
Уравнение прямой DС, параллельной АВ:
4х+3у+m=0
Чтобы найти m подставим координаты точки D
4·7+3·3+m=0 ⇒ m=-37
4x+3y-37=0 - уравнение прямой DC
Отложим на прямой 3х-4у+16=0 отрезок AC=5
Получим точку D₁
Координаты этой точки удобнее всего считать по клеточкам
D(-4;1)
Уравнение прямой D₁С, параллельной АВ:
4х+3у+m=0
Чтобы найти m подставим координаты точки D₁
4·(-4)+3·1+m=0 ⇒ m=13
4x+3y+13=0 - уравнение прямой DC
х=0 тогда у= 4 А(0; 4)
у=0 тогда х=3 В(3;0)
2) Прямые перпендикулярные данной имеют вид 3х-4у+с=0
нормальные векторы взаимно перпендикулярных прямых ортогональны
нормальный вектор данной прямой (4;3)
нормальный вектор ортогональных прямых (3;-4)
Скалярное произведение в самом деле даст 0
4·3+3·(-4)=0
Чтобы найти с подставим координаты точек
А(0;4)
3·0-4·4+с=0 ⇒ с =16
3х-4у+16=0 уравнение прямой, перпендикулярной прямой 4х+3у-12=0 и проходящей через точку А
В(3;0)
3·3-4·0+с=0 ⇒ с = -9
3х-4у-9=0 уравнение прямой, перпендикулярной прямой 4х+3у-12=0 и проходящей через точку В
Сторона квадрата АВ=5 ( египетский треугольник)
Отложим на прямой 3х-4у-9=0 отрезок BD=5
Получим точку D
Координаты этой точки удобнее всего считать по клеточкам
D(7;3)
Уравнение прямой DС, параллельной АВ:
4х+3у+m=0
Чтобы найти m подставим координаты точки D
4·7+3·3+m=0 ⇒ m=-37
4x+3y-37=0 - уравнение прямой DC
Отложим на прямой 3х-4у+16=0 отрезок AC=5
Получим точку D₁
Координаты этой точки удобнее всего считать по клеточкам
D(-4;1)
Уравнение прямой D₁С, параллельной АВ:
4х+3у+m=0
Чтобы найти m подставим координаты точки D₁
4·(-4)+3·1+m=0 ⇒ m=13
4x+3y+13=0 - уравнение прямой DC



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для составления уравнения трех сторон квадрата нужно учесть следующие факты:
1. К


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili