
Через вершину C трапеции ABCD проведена прямая , которая параллельна боковой стороне AB и и
пересекает большее основание AD в точке E найдите углы трапеции если угол D=35 ,DCE=65

Ответы на вопрос

CEA=180-80=100 (т.к смежные )
ВСЕ=СED=80 т.к накрест лежащие
С=80+65=145
AB Паралельна CE зн. ABCE паралерограмм
CEA=CBA=100
BAE=BCE=80



Given Information
We have a trapezoid ABCD, with a straight line passing through the vertex C, parallel to the side AB. This line intersects the longer base AD at point E. We are given that angle D is 35 degrees and angle DCE is 65 degrees.Approach to solve the problem
To find the angles of the trapezoid, we can use the properties of parallel lines and the angles formed by the transversal.Solution
Let's label the angles in the trapezoid as follows: - Angle A = α - Angle B = β - Angle C = γ - Angle D = 35 degreesSince the line passing through vertex C is parallel to side AB, we can conclude that angle C and angle B are alternate interior angles, and therefore they are congruent. So, angle C = β.
Since angles DCE and BCD are supplementary angles (they form a straight line), we can find angle BCD by subtracting angle DCE from 180 degrees. So, angle BCD = 180 - 65 = 115 degrees.
Now, we can use the fact that the sum of the angles in a trapezoid is equal to 360 degrees to find the remaining angle.
The sum of the angles in a trapezoid is given by: α + β + γ + 35 = 360
Substituting the values we know: α + β + β + 35 = 360
Simplifying the equation: α + 2β + 35 = 360
Subtracting 35 from both sides: α + 2β = 325
We have one equation with two variables, so we cannot solve for the individual values of α and β. However, we can find the relationship between them.
Since angle BCD is congruent to angle ACD (they are opposite angles), we can conclude that angle ACD is also 115 degrees.
So, angle A + angle C + angle D = 180 degrees: α + γ + 35 = 180
Substituting the value of γ as β: α + β + 35 = 180
Simplifying the equation: α + β = 145
Now, we have a system of equations: α + 2β = 325 α + β = 145
Subtracting the second equation from the first equation: α + 2β - (α + β) = 325 - 145 β = 180
Substituting the value of β back into the second equation: α + 180 = 145 α = 145 - 180 α = -35
Since we cannot have negative angles, we conclude that there is no solution for the given angles.
Therefore, the angles of the trapezoid cannot be determined with the given information.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili