
Вопрос задан 12.04.2019 в 19:42.
Предмет Геометрия.
Спрашивает Иванов Сергей.
В правильной треугольной пирамиде DABC боковые ребра DA,DB и DC взаимно перпендикулярны. Вершина D
является центром сферы , на поверхности которой лежат точки A,B, и C. Найдите площадь сферы, если ее высота равна 2*sqrt(3) см.

Ответы на вопрос

Отвечает Вадзишвили Леона.
В правильной треугольной пирамиде DABC боковые ребра DA,DB и DC взаимно перпендикулярны. Вершина D является центром сферы , на поверхности которой лежат точки A,B, и C. Найдите площадь сферы, если ее высота равна 2√3 см.
-------
Понятно, что 2√3 см - высота пирамиды, т.к. у сферы нет высоты.
-------------
Боковые ребра пирамиды взаимно перпендикулярны, вершины ∆ АВС лежат на поверхности сферы, D- ее центр, следовательно, все ребра данной пирамиды равны радиусу R сферы, и боковые грани - равнобедренные прямоугольные треугольники/
Боковые ребра пирамиды равны, ⇒ равны их проекции на плоскость треугольника АВС, ⇒ основание О высоты DО лежит в центре описанной вокруг ∆ АВС окружности.
Пусть стороны основания равны 2а.
Высота DH боковой грани делит ее на два равнобедренных прямоугольных треугольника, является её медианой и равна половине стороны основания. DH=a ⇒
R сферы =AD
АD = DС= a√2 как гипотенуза равнобедренного прямоугольного треугольника DHC.
AO=2a /√3 как радиус описанной вокруг ∆ АВС окружности.
AD²=OD²+AO²
(a√2)²=(2√3)²+(2a/√3)²
2a²=12+(4a²/3)
6a²=36+4a²
2a²=36
AD²=36=R²
Sсферы=4πR²
S=4*36π=144π см²
-------
Понятно, что 2√3 см - высота пирамиды, т.к. у сферы нет высоты.
-------------
Боковые ребра пирамиды взаимно перпендикулярны, вершины ∆ АВС лежат на поверхности сферы, D- ее центр, следовательно, все ребра данной пирамиды равны радиусу R сферы, и боковые грани - равнобедренные прямоугольные треугольники/
Боковые ребра пирамиды равны, ⇒ равны их проекции на плоскость треугольника АВС, ⇒ основание О высоты DО лежит в центре описанной вокруг ∆ АВС окружности.
Пусть стороны основания равны 2а.
Высота DH боковой грани делит ее на два равнобедренных прямоугольных треугольника, является её медианой и равна половине стороны основания. DH=a ⇒
R сферы =AD
АD = DС= a√2 как гипотенуза равнобедренного прямоугольного треугольника DHC.
AO=2a /√3 как радиус описанной вокруг ∆ АВС окружности.
AD²=OD²+AO²
(a√2)²=(2√3)²+(2a/√3)²
2a²=12+(4a²/3)
6a²=36+4a²
2a²=36
AD²=36=R²
Sсферы=4πR²
S=4*36π=144π см²


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili