Вопрос задан 11.04.2019 в 11:22. Предмет Геометрия. Спрашивает Монгулов Найыр.

Отрезок АB длины а разделён точками Р и Q на три отрезка:AP,PQ,QB так, что AP=2QB=2PQ.Найдите

расстояние между: а) точкой А и серединой отрезка QB b)Серединами отрезков АР и QB
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Попов Дима.
Пусть точка N - середина отрезка АР, а точка M - середина отрезка QB.
Нам дано: АР=2QB=2PQ. Это значит, что PQ=QB=(1|4)АВ и АР=(1/2)*АВ.
QM=MB (точка М - середина QB)=(1/8)АВ.
АN=NP (точка N - середина АР)=(1/2)АР=(1/4)АВ. АВ=а (дано).
Тогда имеем:
а) отрезок АМ=АР+PQ+QM или АМ=(1/2)АВ+(1/4)АВ+(1/8)АВ=(7/8)а.
b) отрезок NM=NP+PQ+QM или (1/4)а+(1/4)а+(1/8)а=(5/8)а.
Ответ а) (7/8)а. b) (5/8)а.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос