
Вопрос задан 09.04.2019 в 05:19.
Предмет Геометрия.
Спрашивает Магзом Мадияр.
Докажите ,что две параллельные прямые пересечены секущей,то накрест лежащие углы равны,быстрей
пожалуйста

Ответы на вопрос

Отвечает Даич Илья.
Пусть параллельные прямые a и b пересечены секущей MN. Докажем, что накрест лежащие углы, например, 1 и 2 равны. Допустим, что углы 1 и 2 не равны. Отложим от луча MN угол PMN, равный углу 2, так, чтобы угол PMN и угол 2 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы получили, что через точку М проходят две прямые (прямые a и МР) , параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 1 = углу 2.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili