
Вопрос задан 05.04.2019 в 18:50.
Предмет Геометрия.
Спрашивает Петров Данил.
Основание равнобедренного остроугольного треугольника равно 48, а радиус описанной около него
окружности равен 25. Найдите расстояние между центрами вписанной и описанной окружностей треугольника.

Ответы на вопрос

Отвечает Есмурат Каракат.
Сделаем рисунок, соразмерный данным в условии задачи размерам.
Пусть в треугольник АВС вписана окружность с центром М, и вокруг него же описана окружность с центром О.
ОС- радиус описанной окружности и равен 25.
ВН - биссектриса, высота и медиана треугольника АВС.
ВН - срединный перпендикуляр к АС.
Центр вписанной окружности лежит в точке пересечения биссектрис углов треугольника, центр описанной - на пересечении срединных перпендикуляров ⇒
центры вписанной и описанной окружности лежат на ВН.
НС - половина основания АС и равна 24.
Отношение катета и гипотенузы в треугольнике СОН - из троек Пифагора 7:24:25,
ОН =7 ( можно проверить по т. Пифагора).
МК - радиус окружности М, проведенный в точку касания. МК=МН
Треугольник ВКМ прямоугольный и подобен треугольнику АНВ ( общий острый угол при В).
АВ:ВМ=АН:КМ
ВН=ВО+ОН=25+7=32
АВ=√(ВН²+АН²)=40
КМ=ОН+ОМ=7+ОМ
ВМ=ВО-ОМ=25-ОМ
40:(25-ОМ)=24:(7+ОМ)
40*(7+ОМ)=24*(25+ОМ)
280+40*ОМ=24*25-24*ОМ
64 ОМ=320
ОМ=320:64=5
Расстояние между центрами вписанной и описанной окружностей треугольника равно 5
Пусть в треугольник АВС вписана окружность с центром М, и вокруг него же описана окружность с центром О.
ОС- радиус описанной окружности и равен 25.
ВН - биссектриса, высота и медиана треугольника АВС.
ВН - срединный перпендикуляр к АС.
Центр вписанной окружности лежит в точке пересечения биссектрис углов треугольника, центр описанной - на пересечении срединных перпендикуляров ⇒
центры вписанной и описанной окружности лежат на ВН.
НС - половина основания АС и равна 24.
Отношение катета и гипотенузы в треугольнике СОН - из троек Пифагора 7:24:25,
ОН =7 ( можно проверить по т. Пифагора).
МК - радиус окружности М, проведенный в точку касания. МК=МН
Треугольник ВКМ прямоугольный и подобен треугольнику АНВ ( общий острый угол при В).
АВ:ВМ=АН:КМ
ВН=ВО+ОН=25+7=32
АВ=√(ВН²+АН²)=40
КМ=ОН+ОМ=7+ОМ
ВМ=ВО-ОМ=25-ОМ
40:(25-ОМ)=24:(7+ОМ)
40*(7+ОМ)=24*(25+ОМ)
280+40*ОМ=24*25-24*ОМ
64 ОМ=320
ОМ=320:64=5
Расстояние между центрами вписанной и описанной окружностей треугольника равно 5


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili