Вопрос задан 07.05.2018 в 20:02. Предмет Геометрия. Спрашивает Зайцев Олег.

Концы отрезка AB лежат по одну сторону от плоскости альфа, через точки A и B проведены прямые

параллельные между собой, которые пересекают плоскость альфа в точках A1 и B1. Постройте точку пересечения прямой AB с плоскостью альфа и вычислите AA1, BB1, если A1B1 относится к B1O как 3:2 (O-точка пересечения), AA1+BB1=35
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Юдина Карина.

Чертим отрезок АВ, от его концов проводим параллеьно отрезки АА1 и ВВ1, чертим отрезок А1В1 так, чтобы он на "тетрадном поле" пересекался с отрезком АВ. Точку пересечения обозначаем О. Через отрезок А1В1 проводим плоскость α.

Решение:
1) тр А1ОА и тр В1ОВ подобны по двум углам (уг ОАА1 = уг ОВВ1; уг
ОА1А = уг ОВ1В  - как соответственные при AA1||BB1  и секущей ОВ и ОВ1 соответственно при кажной паре углов)
⇒ А1О / В1О = ОА / ОВ = АА1 / ВВ1 = k
    k= А1О / В1О = (3+2) / 5 = 5/2 (по данным условия задачи)
2) из условия АА1 = 35 - ВВ1
    из 1) получаем: 
35-ВВ1 / ВВ 1 = 5/2
5 *ВВ1 = 2(35-ВВ1)
5 ВВ1 = 70 - 2 ВВ1
7 ВВ1= 70
ВВ1= 10 
АА1= 35-10
АА1=25

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос