
Вопрос задан 24.03.2019 в 09:38.
Предмет Геометрия.
Спрашивает Ганиева Тансылу.
Дан треуг. ABC , вписанный в окр. (O;R). Найти углы треуг. ABC если дуга BC = 80°, дуга AB÷ дугу AC
= 4÷3

Ответы на вопрос

Отвечает Юрковская Настюша.
Углы вписанного в окружность треугольника - вписанные. Вписанный угол измеряется половиной дуги, на которую он опирается.
Полная окружность содержит 360°.
◡ВАС=360°-80°=280°
АВ:АС=4:3
Примем коэффициент этого отношения равным х.
Дуга ВАС состоит из ◡АВ+◡АС и равна .
4х+3х=7х
х=280°:7=40° – содержит каждая часть ◡ВАС
◡АС=3•40°=120°
◡АВ=4•40°=160°
Угол А опирается на дугу ВС и равен ее половине:
∠А=80°:2=40°
Угол В опирается на дугу АС и равен ее половине:
∠В=120:2=60°
Угол С опирается на дугу АВ и равен ее половине:
∠С=160°:2=80°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili