Вопрос задан 22.03.2019 в 14:22. Предмет Геометрия. Спрашивает Шахмаев Айдар.

Определите наибольшее и наименьшее значение выражения: √2sinA+√2cosA

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Назаров Олег.
Строим графики функций y=sinx и y=cosx в одной системе координат (достаточно на промежутке от  нуля до пи. Отмечаем точки пересечения графиков этих функций π/4 и 3π/4  
√2(sinπ/4+cosπ/4)=√2(√2/2+√2/2)=√2*2√2/2=2 -наибольшее значение
√2(sin3π/4+cos3π/4)=√2(-√2/2-√2/2)=-√2*2√2/2=-2-наименьшее значение

0 0
Отвечает Кураев Муса.
 \sqrt{2}sin \alpha + \sqrt{2} cos \alpha = \sqrt{2} \cdot \frac{ \sqrt{2}}{2} \cdot  \frac{2}{ \sqrt{2} } sin\alpha+\sqrt{2}\cdot \frac{\sqrt{2} }{2} \cdot \frac{2}{ \sqrt{2}}cos \alpha=
\\\
=2 \cdot \frac{ \sqrt{2}}{2}sin \alpha+ 2\cdot \frac{ \sqrt{2} }{2} cos \alpha =
2 cos\frac{\pi}{4} sin \alpha+ 2sin \frac{ \pi }{4} cos \alpha =
\\
=2(cos\frac{\pi}{4}sin\alpha+sin\frac{\pi}{4}cos\alpha)=
2sin(\alpha+\frac{\pi}{4})
\\\\
-1\leq sin(\alpha+\frac{\pi}{4})\leq1
\\\
-2\leq2sin(\alpha+\frac{\pi}{4})\leq2
Ответ: наибольшее значение 2, наименьшее значение -2
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос