Вопрос задан 18.03.2019 в 22:05. Предмет Геометрия. Спрашивает Морозов Кирилл.

Из точки А , не лежащей на окружности проведены к ней касательная и секущая. Расстояние от точки А

до точки касания равно 12 см, а до одной из точек пересечения секущей с окружностью равно 18 см. Найти радиус окружности, если секущая удалена от ее центра на 3 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Голубева Лера.
Пусть точка касания будет В, секущая АС, ближняя к А точка её пересечения  с окружностью К.
Если из точки, лежащей вне окружности, проведены касательная и 
секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть.
По этой теореме АВ
²=АС:АК
144=18*АК
АК=144:18=8

СК=18 - 8=10
Соединим центр окружности с С и К. 
∆ СОК - равнобедренный (боковые стороны - радиусы). 
Расстояние от точки до прямой - перпендикуляр. 
ОН
⊥СК⇒ ОН - высота и медиана равнобедренного ∆ СОК. 
СН=КН=8:2=4
По т. Пифагора ОК=
√(ОН²+КН²)=5 см
 
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос