Вопрос задан 18.03.2019 в 18:40. Предмет Геометрия. Спрашивает Баскаль Елизавета.

В треугольнике ABC NP-средняя линия . Площадь треугольника ABC=40 . Найдите площадь треугольника

NPC... Решите , пожалуйста. Очень нужно
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шутова Настя.
Площадь треугольника, отсекаемого средней линией, равна четверти площади исходного треугольника*. S(NPB)=40/4=10. Треугольники NPB и NPC имеют общую высоту (опущенную из N на BC) и равные основания (BP=PC), следовательно их площади равны. S(NPC)=S(NPB)=10.

----------------------------------------------------
*) Средняя линия равна половине основания. Средняя линия делит высоту (и любой отрезок, соединяющий противолежащую вершину и точку на параллельном основании) пополам. Произведение половины основания и половины высоты дает вчетверо меньшую площадь.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос