Вопрос задан 12.03.2019 в 13:29. Предмет Геометрия. Спрашивает Мерцалова Мара.

Треугольник apd и трапеция abcd имеют общую сторону ad и лежат в разных плоскостях. Через основание

BC трапеции и середину отрезка pd-точку k проведена плоскость, которая пересекает прямую ap в точке M, ad=2bc. Докажите что отрезки mc и bk пересекаются и точкой пересечения делятся пополам.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федорова Виолетта.
Цитата: "Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются, то их линия пересечения параллельна каждой из данных прямых".
Линия пересечения mk плоскостей abcd и bckm параллельна ad, так как bc параллельна ad. Следовательно, mk - средняя линия треугольника apd и равна (1/2)*ad, то есть равна bc. Значит фигура bckm - параллелограмм (точки b, c, k, m лежат в одной плоскости и стороны bc и mk равны и параллельны). В параллелограмме диагонали mc и bk пересекаются и в точке пересечения делятся пополам, что и требовалось доказать.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос