Вопрос задан 03.03.2019 в 15:58. Предмет Геометрия. Спрашивает Андреев Сергей.

найти объём пирамиды, в основании которой лежит параллелограмм со сторонами 2см и √3 см и углом

между ними 30 градусов, если высота пирамиды равна меньшей диагонали основания?)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Илясова Алина.

Меньшая диагональ, а значит и высота пирамиды, находится по теореме косинусов:

h^2 = 4 + 3 - 2*2*√3 *cos30 = 7 - 6 = 1.  h = 1 cm.

Площадь основания:

Sосн = 2*√3 *sin30 = √3 см^2

Объем пирамиды:

V = (1/3)Sосн*h = √3 /3 cm^3

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос