Вопрос задан 01.05.2018 в 10:23. Предмет Геометрия. Спрашивает Драгунов Фаниль.

В прямоугольнике ABCD со сторонами AB=4 дм, AD=8 дм проведены биссектрисы двух углов, прилежащих к

большей стороне. Определите, на какие части делится площадь прямоугольника этими биссектрисами.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мартюшова Ирина.

Площадь данного прямоугольника делится биссектрисами углов основания на 3  части. 
∠ВАО=45°, так как АО-биссектриса угла⇒∠ВОА=90-45=45°⇒ВО=АВ=4см∠ODC=∠DOC=45°⇒OC=CD=4см.Опустим ОК⊥AD АК=ОВ=KD=OC=ОК=4 см  Sтр АВО=Sтр ОСD=1/2*4*4=8см².
Sтр AOD=1/2*4*8=16cм²⇒биссектриса углов основания делит данный прямоугольник на 3 части: 8см², 8см²,16см²


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос