
Дам 35 баллов!Из пункта А в пункт Б расстояние между которыми 2 км выехали два автомобиля. Так как
скорость первого автомобиля на 4 км в час больше скорости второго то первый автомобиль в пункт назначения прибыл на 15 раньше чем второй.Найдите скорость каждого из автомобилей .

Ответы на вопрос




Problem Analysis
We are given that two cars traveled from point A to point B, with a distance of 2 km between them. The first car arrived at the destination 15 minutes earlier than the second car because its speed was 4 km/h faster than the speed of the second car. We need to find the speed of each car.Solution
Let's assume the speed of the second car is x km/h. Since the speed of the first car is 4 km/h faster, its speed will be x + 4 km/h.We can use the formula speed = distance / time to find the time taken by each car to travel from point A to point B.
For the first car: - Speed = x + 4 km/h - Distance = 2 km - Time = Distance / Speed = 2 / (x + 4) hours
For the second car: - Speed = x km/h - Distance = 2 km - Time = Distance / Speed = 2 / x hours
According to the given information, the first car arrived 15 minutes earlier than the second car. Since 1 hour is equal to 60 minutes, 15 minutes is equal to 15/60 = 1/4 hour.
So, the time taken by the first car is 1/4 hour less than the time taken by the second car.
Setting up the equation: Time taken by the first car = Time taken by the second car - 1/4
2 / (x + 4) = 2 / x - 1/4
To solve this equation, we can cross-multiply and simplify:
2x = 2(x + 4) - (1/4)(x)(x + 4)
2x = 2x + 8 - (1/4)(x^2 + 4x)
2x = 2x + 8 - (1/4)x^2 - x
0 = 8 - (1/4)x^2 - x
Rearranging the equation: (1/4)x^2 + x - 8 = 0
Now we can solve this quadratic equation to find the value of x, which represents the speed of the second car.
Using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a)
In this case: a = 1/4, b = 1, c = -8
Substituting the values into the quadratic formula: x = (-(1) ± √((1)^2 - 4(1/4)(-8))) / (2(1/4))
Simplifying: x = (-1 ± √(1 + 8)) / (1/2)
x = (-1 ± √9) / (1/2)
x = (-1 ± 3) / (1/2)
We have two possible solutions: 1. x = (-1 + 3) / (1/2) = 2 / (1/2) = 2 * 2 = 4 km/h 2. x = (-1 - 3) / (1/2) = -4 / (1/2) = -4 * 2 = -8 km/h
Since speed cannot be negative, the speed of the second car is 4 km/h.
Now we can find the speed of the first car: Speed of the first car = Speed of the second car + 4 = 4 + 4 = 8 km/h
Answer
The speed of the first car is 8 km/h, and the speed of the second car is 4 km/h.

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili