
Вопрос задан 01.05.2018 в 06:14.
Предмет Геометрия.
Спрашивает Дударчик Ксюха.
70 баллов!!! Найдите площадь трапеции, диагонали которой равны 6 и 8, а средняя линия равна 5.


Ответы на вопрос

Отвечает Кулагин Лева.
Пусть h – высота трапеции ABCD с основаниями AD и BC и диагоналями AC=6 и BD=8 , l – средняя линия трапеции. Через вершину C проведём прямую параллельно диагонали BD до пересечения с продолжением основания AD в точке M . Тогда четырёхугольник BCMD – параллелограмм, поэтому
CM=BD=8, DM=BC, AM=AD+DM = AD+BC = 2l = 10.
Значит, треугольник ACM – прямоугольный ( AM2=AC2+CM2 ). Его площадь равна половине произведения катетов, т.е.
SΔ ACM =1/2(дробь)AC· CM = 1/2(дробь)· 6· 8 = 24.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili