Вопрос задан 30.04.2018 в 16:57. Предмет Геометрия. Спрашивает Ишметова Карина.

В кубе abcda1b1c1d1 точки m и n середины ребер abи ad Через точки a1,m,n проведена

плоскость.Постройте сечение куба плоскостью и Вычислите площадь сечения,если ребро куба равно a
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крамм Виктория.

Для построения сечения достаточно соединить заданные точки прямыми.
В сечении получаем равнобедренный треугольник NA1M.
A1N = √(a²+(a/2)²) = a√5/2.
MN = (a/2)*√2 = a√2/2.
Высота h треугольника равна √(A1N²-(MN/2)²) = √((5a²/4)-(2a²/16) = = a√18/4 = a3√2/4.
Площадь сечения равна:
S = (1/2)MN*h = (1/2)(a√2/2)*(a3√2/4) = 3a²/8.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос