
Вопрос задан 30.04.2018 в 16:57.
Предмет Геометрия.
Спрашивает Ишметова Карина.
В кубе abcda1b1c1d1 точки m и n середины ребер abи ad Через точки a1,m,n проведена
плоскость.Постройте сечение куба плоскостью и Вычислите площадь сечения,если ребро куба равно a

Ответы на вопрос

Отвечает Крамм Виктория.
Для построения сечения достаточно соединить заданные точки прямыми.
В сечении получаем равнобедренный треугольник NA1M.
A1N = √(a²+(a/2)²) = a√5/2.
MN = (a/2)*√2 = a√2/2.
Высота h треугольника равна √(A1N²-(MN/2)²) = √((5a²/4)-(2a²/16) = = a√18/4 = a3√2/4.
Площадь сечения равна:
S = (1/2)MN*h = (1/2)(a√2/2)*(a3√2/4) = 3a²/8.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili