Вопрос задан 24.02.2019 в 13:16. Предмет Геометрия. Спрашивает Мастерских Дима.

Знайдіть периметр трикітника, якщо дві його сторони дорівнюють 20 см і 30 см, а бісектриса кута між

ними ділить третю сторону на відрізки, більший з яких дорівнює 15 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Садовский Андрей.
20+30+15+х
х=15, так как бисектриса делит угол пополам.
20+30+15+15=80 см.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Perimeter of a Triangle with Given Side Lengths and Bisector

To find the perimeter of a triangle with two given side lengths and a bisector dividing the third side into two segments, we can use the properties of triangles and trigonometry.

Let's denote the two given side lengths as a = 20 cm and b = 30 cm. The bisector divides the third side into two segments, with the longer segment measuring c = 15 cm.

To find the perimeter of the triangle, we need to determine the length of the remaining side, which we'll denote as d.

To solve for d, we can use the Law of Cosines, which states that in a triangle with sides a, b, and c, and angle C opposite side c, the following equation holds:

c^2 = a^2 + b^2 - 2ab * cos(C)

In our case, we know that a = 20 cm, b = 30 cm, c = 15 cm, and the angle opposite side c is bisected by the bisector.

Let's denote the angle opposite side c as θ. Since the bisector divides the angle into two equal parts, each part measures θ/2.

Using the Law of Cosines, we can rewrite the equation as:

d^2 = a^2 + b^2 - 2ab * cos(θ/2)

To find d, we can rearrange the equation and solve for it:

d = sqrt(a^2 + b^2 - 2ab * cos(θ/2))

Now, we can calculate d using the given values:

d = sqrt((20 cm)^2 + (30 cm)^2 - 2 * 20 cm * 30 cm * cos(θ/2))

To find the value of cos(θ/2), we can use the half-angle formula for cosine:

cos(θ/2) = sqrt((1 + cos(θ))/2)

Now, let's substitute the values and calculate d:

d = sqrt((20 cm)^2 + (30 cm)^2 - 2 * 20 cm * 30 cm * sqrt((1 + cos(θ))/2)) Finally, to find the perimeter of the triangle, we add up all the side lengths:

Perimeter = a + b + c + d

Substituting the given values, we get:

Perimeter = 20 cm + 30 cm + 15 cm + d

Perimeter = 65 cm + d

To find the exact perimeter, we need to substitute the value of d from the equation we derived earlier.

Please note that without the exact value of the angle θ, we cannot provide an exact numerical value for the perimeter. However, the equation we derived can be used to calculate the perimeter once the value of θ is known.

I hope this explanation helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос