Вопрос задан 30.04.2018 в 08:48. Предмет Геометрия. Спрашивает Соловьев Иван.

Совсем ничего не выходит. Помогите, пожалуйста!Площадь основания прямой треугольной призмы равна 4

корня из 6 дм. в квадрате. Найти площадь сечения призмы проведенного через сторону одного основания и параллельную ей среднюю линию другого основания, если известно что сечение образует с плоскостью основания угол в 30 градусов. Решение желательно поподробнее. Заранее спасибо! :)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бритвина Арина.

Цитата: "Средняя линия треугольника отсекает от данного треугольник, который подобен данному, а его площадь равна одной четвертой площади исходного треугольника".
Итак, площадь трапеции СDEB равна 3/4 площади основания (площадь основания минус 1/4 ее), то есть (3/4)*4√6 = 3√6дм².
Площадь сечения СFGB - площадь трапеции, отличающейся от трапеции СDEB только высотой. Ее высота h2 это гипотенуза О1Н треугольника ОО1Н и равна h2=h1/Cos30° = h1/(√3/2) = h1*2/√3 (так как угол при основании = 30°). Значит и площадь сечения равна Sc=S1*2/√3 = (3√6)*(2/√3) = 6√2дм²
Ответ: площадь сечения равна 6√2дм².
Решение а приложенном рисунке.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос