Вопрос задан 30.04.2018 в 08:28. Предмет Геометрия. Спрашивает Цукан Аня.

Найдите объём правильной четырёхугольной пирамиды, боковое ребро которой равно 12см и образует с

высотой угол в 30 градусов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Красильникова Светлана.

Так как пирамида правильная то в основании квадрат. Точка куда опускается высота пирамиды делит диагональ основания пополам. Пусть х сторона основания. Диагональ =акорень2
Половина диагонали (акорень 2)/2. она лежит напротив угла в 30 град (если рассмотреть треугольник, образованный высотой, боковой грарью и половинкой диагонали) и равна половине гипотенузе=12/2=6
акорень 2/2=6
а=6корень2
Высота^2=12^2-(6корень2)^2=144-72=72
высота=6корень2
V=Sh/3
V=(6корень2)*(6корень2)×(6корень2)/3=144корень2

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос