
Треугольник ABC -равнобедренный ,его основание AB равно 10,угол ACB =44 градуса.CM- высота
треугольника .найдите длину отрезка AM и угла ACM

Ответы на вопрос

1) так как треугольник равнобедренный следует что ,высота также является его биссектрисой и медианой .
2) так как СМ медиана следует АМ = АВ : 2 = 5
3) так как СМ биссектриса следует угол АСМ =44 : 2 = 22



Для начала найдем длину боковой стороны треугольника ABC. Так как треугольник ABC равнобедренный, то стороны AB и AC равны. Таким образом, сторона AB равна 10.
Далее, найдем угол BAC. Так как треугольник ABC равнобедренный, то угол BAC также равен 44 градусам.
Теперь мы можем найти длину высоты треугольника CM. Для этого воспользуемся тригонометрическими функциями. Так как угол ACB равен 44 градусам, то угол CAM (где AM - высота) равен 90 - 44 = 46 градусов. Тогда длина отрезка AM можно найти по формуле AM = CM * sin(46 градусов).
Таким образом, мы можем найти длину отрезка AM.
Чтобы найти угол ACM, мы можем воспользоваться тем, что треугольник ACM - прямоугольный. Таким образом, угол ACM равен arctg(AM/CM).
Таким образом, найдя длину отрезка AM и угол ACM, мы можем полностью описать треугольник ABC.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili