Вопрос задан 29.04.2018 в 06:13. Предмет Геометрия. Спрашивает Васильева Анастасия.

.На отрезке AB выбрана точка C так, что AC=72 и BC=25. Построена окружность с центром A, проходящая

через C. Найдите длину касательной, проведённой из точки B к этой окружности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Андрощук Ангеліна.

Пусть K - точка касания данной окружности и прямой,проходящей через точку B.
Соединим центр окружности A и точку K. Тогда отрезок AK перпендикулярен BK, треугольник AKB - прямоугольный (так как AK - радиус,проведенный в точку касания). AK=AC=72 (см), AB=AC+BC=97 (см).
Отрезок BK найдем по теореме Пифагора:
BK=√AB^2-AK^2=√97^2-72^2=√4225=65 (см).
Ответ: 65.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос