Вопрос задан 16.02.2019 в 11:43. Предмет Геометрия. Спрашивает Маланяк Мария.

к плоскости альфа проведены наклонные Ma и Mb и перпендикуляр MO углы между Ma и Mb и плоскостью

равны соответственно 30 и 45 градусов, MO равна 15 см вычислите длины наклонной MA и проекции наклонной MB
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тимофеева Дарья.
Треугольники АМО и МВО-прямоугольные.Остальное-в решении.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given a plane alpha and two inclined lines Ma and Mb. The angles between Ma and Mb and the plane are 30 and 45 degrees, respectively. The length of MO is 15 cm. We need to calculate the lengths of inclined line MA and the projection of inclined line MB.

Solution

To solve this problem, we can use trigonometry and the given information to find the lengths of MA and the projection of MB.

Let's start by finding the length of MA. We can use the sine rule to relate the length of MA to the angle between Ma and the plane alpha. The sine rule states that for a triangle ABC with sides a, b, and c, and angles A, B, and C, the following relationship holds:

\( \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \)

In our case, we have the angle between Ma and the plane alpha as 30 degrees and the length of MO as 15 cm. Let's assume the length of MA as x. Using the sine rule, we can write:

\( \frac{x}{\sin(30)} = \frac{15}{\sin(90)} \)

Simplifying the equation, we get:

\( x = 15 \times \sin(30) \)

Now, let's find the projection of MB. The projection of MB onto the plane alpha is the perpendicular distance from point M to the plane alpha. We can use the Pythagorean theorem to find this distance. We have the length of MO as 15 cm and the angle between Mb and the plane alpha as 45 degrees. Let's assume the projection of MB as y. Using the Pythagorean theorem, we can write:

\( y^2 = 15^2 - 15^2 \times \sin^2(45) \)

Simplifying the equation, we get:

\( y = \sqrt{15^2 - 15^2 \times \sin^2(45)} \)

Now, let's calculate the values of x and y.

Calculation

Using the given values and the equations derived above, we can calculate the lengths of MA and the projection of MB as follows:

\( x = 15 \times \sin(30) \)

\( y = \sqrt{15^2 - 15^2 \times \sin^2(45)} \)

Substituting the values, we get:

\( x = 15 \times 0.5 = 7.5 \) cm

\( y = \sqrt{15^2 - 15^2 \times 0.5^2} = \sqrt{225 - 112.5} = \sqrt{112.5} \approx 10.61 \) cm

Therefore, the length of inclined line MA is approximately 7.5 cm, and the length of the projection of inclined line MB is approximately 10.61 cm.

Answer

The length of inclined line MA is approximately 7.5 cm, and the length of the projection of inclined line MB is approximately 10.61 cm.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос