Вопрос задан 15.02.2019 в 05:26. Предмет Геометрия. Спрашивает Мяус Юля.

С одной точки к плоскости проведено две ровные наклонные(похилые), которые образуют с

перпендикуляром углы по 45 градусов. Найдите угол между проекциями наклонных на эту плоскость, если наклонные образуют угол 60 градусов между собой.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Звеков Андрей.
Решение в скане..........
0 0
Отвечает Федотов Егор.
Решение в приложении.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that two equal inclined lines are drawn from a point to a plane, forming angles of 45 degrees with the perpendicular. The lines themselves form an angle of 60 degrees with each other. We need to find the angle between the projections of the inclined lines onto the plane.

Solution

To find the angle between the projections of the inclined lines onto the plane, we can use the concept of dot product. The dot product of two vectors is equal to the product of their magnitudes and the cosine of the angle between them.

Let's assume the inclined lines are represented by vectors A and B. The projections of these vectors onto the plane can be represented by vectors A' and B' respectively.

The angle between the projections of the inclined lines onto the plane can be found using the formula:

cos(θ) = (A' · B') / (|A'| * |B'|)

where · represents the dot product, and |A'| and |B'| represent the magnitudes of vectors A' and B' respectively.

To find the angle between the inclined lines, we can use the formula:

cos(60) = (A · B) / (|A| * |B|)

Now, let's calculate the angle between the projections of the inclined lines onto the plane.

Calculation

Since we don't have specific values for the vectors A and B, we can use the given information to calculate the angle between the projections of the inclined lines onto the plane.

From the given information, we know that the inclined lines form an angle of 60 degrees with each other. Therefore, the dot product of vectors A and B can be calculated as:

A · B = |A| * |B| * cos(60)

Now, let's calculate the angle between the projections of the inclined lines onto the plane using the formula:

cos(θ) = (A' · B') / (|A'| * |B'|)

Since the inclined lines are equal and form angles of 45 degrees with the perpendicular, the magnitudes of vectors A and B are equal. Therefore, we can simplify the formula as:

cos(θ) = (A' · B') / (|A'|²)

Now, let's substitute the value of the dot product of vectors A and B into the formula:

cos(θ) = (A' · B') / (|A'|²) = (|A| * |B| * cos(60)) / (|A'|²)

Since the inclined lines form angles of 45 degrees with the perpendicular, the magnitudes of vectors A' and B' are equal to |A| * cos(45) = |A| * sin(45) = |A| * (sqrt(2) / 2). Therefore, we can further simplify the formula as:

cos(θ) = (|A| * |B| * cos(60)) / ((|A| * sqrt(2) / 2)²)

Simplifying further:

cos(θ) = (|A| * |B| * cos(60)) / ((|A|² * 2) / 4)

cos(θ) = (4 * |A| * |B| * cos(60)) / (2 * |A|²)

cos(θ) = (2 * |B| * cos(60)) / |A|

Since the inclined lines form angles of 45 degrees with the perpendicular, the magnitudes of vectors A and B are equal. Therefore, we can simplify the formula as:

cos(θ) = (2 * |B| * cos(60)) / |B|

cos(θ) = 2 * cos(60)

cos(θ) = 2 * 0.5

cos(θ) = 1

Therefore, the angle between the projections of the inclined lines onto the plane is 0 degrees.

Answer

The angle between the projections of the inclined lines onto the plane is 0 degrees.

Note: The calculations were performed based on the given information and assumptions made.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос