Вопрос задан 28.04.2018 в 03:30. Предмет Геометрия. Спрашивает Ушкалов Женя.

Доказательство теоремы о параллельных прямых

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аманжол Асман.

Признаки параллельности прямых.

1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОАК = ∠ОВН = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.

2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Доказательство:
∠1 = ∠2 по условию - соответственные,
∠1 = ∠3 как вертикальные, значит
∠2 = ∠3. А эти углы - накрест лежащие. Значит, прямые параллельны по первому признаку.

3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.
Доказательство:
∠1  + ∠2 = 180° по условию - односторонние углы.
∠2 + ∠3 = 180° так как эти углы смежные, следовательно
∠1 = ∠3.
А эти углы - накрест лежащие. Значит, прямые параллельны по первому признаку.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос