
Доказательство теоремы о параллельных прямых


Ответы на вопрос

Признаки параллельности прямых.
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОАК = ∠ОВН = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Доказательство:
∠1 = ∠2 по условию - соответственные,
∠1 = ∠3 как вертикальные, значит
∠2 = ∠3. А эти углы - накрест лежащие. Значит, прямые параллельны по первому признаку.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.
Доказательство:
∠1 + ∠2 = 180° по условию - односторонние углы.
∠2 + ∠3 = 180° так как эти углы смежные, следовательно
∠1 = ∠3.
А эти углы - накрест лежащие. Значит, прямые параллельны по первому признаку.



Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili