Вопрос задан 08.02.2019 в 04:56. Предмет Геометрия. Спрашивает Нинард Эвелина.

Найдите радиус окружности,описанной около треугольника ABC,если расстояние от центра окружности до

стороны BC равно 1,5,а угол BAC=60
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фомицкий Вячеслав.
Если угол BAC=60°(как вписанный), то угол BОC=120° (как центральный).
Центр описанной окружности находится на одинаковом расстоянии от вершин треугольника. Треугольник ВОС - равнобедренный. ВО и ОС - это радиусы. 
Расстояние от центра окружности до стороны BC - это высота треугольника ВОС, делит угол 120° пополам, то есть по 60°. Угол ОВС тогда равен 30°.
Радиус R = 1,5 / sin 30° = 1,5/(1/2) = 3.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос