
Вопрос задан 06.02.2019 в 18:04.
Предмет Геометрия.
Спрашивает Комиссаров Никита.
Касательные в точках A и B к окружности с центром O пересекаются под углом 38 градусов. Найдите
угол ABO. Ответ дайте в градусах. Надо уже сегодня, на крайний случай - завтра ранним утром.

Ответы на вопрос

Отвечает Борисенков Михаил.
Проведем проведем ОА и ОВ: ОА⊥АС, ОВ⊥ВС, ОС биссектриса ∠С -по свойству касательных к окружности.В ΔАСО ∠ОСА=38/2=19°⇒
∠АОС=90-19=71°⇒∠АОВ=2*71=142°.
Другое решение:
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами.
∠АОВ+∠АСВ=π⇒∠АОВ=180-38=142°
∠АОС=90-19=71°⇒∠АОВ=2*71=142°.
Другое решение:
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами.
∠АОВ+∠АСВ=π⇒∠АОВ=180-38=142°



Отвечает Лазарев Алексей.
Пусть касательные пересекаются в точке Т, тогда АТ=ВТ (по свойству касательных), ∠АТВ=38°, ∠ТАО=∠ТВО=90° (по свойству касательной и радиуса окружности).
Рассмотрим ΔТАО, ∠АТО=1\2 ∠АТВ=19°
∠АОТ=90°-19°=71°
∠ТОВ=∠АОТ=71°
ΔАОВ - равнобедренный, т.к. образован радиусами окружности.
∠АОВ=2*71=142°, тогда ∠ОАВ=∠АВО=(180-142):2=19°
Ответ: 19 °
Рассмотрим ΔТАО, ∠АТО=1\2 ∠АТВ=19°
∠АОТ=90°-19°=71°
∠ТОВ=∠АОТ=71°
ΔАОВ - равнобедренный, т.к. образован радиусами окружности.
∠АОВ=2*71=142°, тогда ∠ОАВ=∠АВО=(180-142):2=19°
Ответ: 19 °


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili